Clean Beauty = Safety First!

Cosmetic Safety Testing
Cosmetic Safety Testing

Clean Beauty Movement

The rising movement of “Clean Beauty” products has been growing as consumers demand honesty, transparency, sustainability and safety from their skin care and hygiene products.  Not to be confused with natural or organic, the term “clean” refers to products formulated without harmful ingredients.

MB Research Labs has long been a partner in the safety testing of cosmetic ingredient and finish products.  We test both natural and synthetic materials, so as you may adjust your sourcing and need to validate ingredients, MB Research will be there for you.


MB Research offers industry leading in vitro toxicology testing protocols where we are able to screen your ingredients and finished products for ocular irritation, skin irritation, skin sensitization, corrosivity and more.

In Vitro Toxicology Test Methods



SOT 2019 – Thursday Posters!

SOT 2019 in Baltimore! Don’t miss our special posters on Thursday Morning!

#SOT2019 #MBRESEARCH #InVitroToxicology
#SOT2019 #MBRESEARCH #InVitroToxicology

Alternative Vehicles Allow the LuSens Test Method to Predict Dermal Sensitization of Mixtures
8:30 AM – 11:30 AM. Session: Late-Breaking 9: Toxicokinetics; Mixtures, Abstract 3488, Poster Board P284

Classification of EPA Ocular Irritants and Non-Irritants by the OptiSafe™ Test Method of Mixtures
8:30 AM – 11:30 AM. Session: Late-Breaking 3: Model Systems; Nanotoxicology, Abstract 3383, Poster Board P173

Ethanol as an alternative vehicle for determining skin sensitization potential using the Human Cell Line Activation Test (h-CLAT)
8:30 AM – 11:30 AM. Session: Late-Breaking 3: Model Systems; Nanotoxicology, Abstract 3385, Poster Board P175

Cutting-Edge Toxicology

Going to SOT in Baltimore? Stop by our Booth #4157 and get the latest on our Toxicology Testing and Research Portfolio.

New Toxicology Testing Offered

Ask us about our newest addition, the GARD™ Sensitization Testing Platform. We are honored to be working with SenzaGen and offer this set of novel genomic based assays for sensitization.

We will also be presenting scientific posters on the rest of our research at MB. Check out our special webpage on our SOT activities.


MB Research & SenzaGen Collaboration – GARD Sensitization Testing

SenzaGen & MB Research Labs
SenzaGen & MB Research Labs Collaboration – GARD Test Platform

GARD™ Sensitization Test Platform

SenzaGen and MB Research Labs have signed a license agreement that gives MB Research the right to market and sell SenzaGen’s animal-free GARD™ test platform worldwide.

The collaboration between these two labs is hoped to offer US clients better access to the novel sensitization testing platform offered by SenzaGen and also falls into line with MB Research’s acute and subchronic toxicology testing portfolio.

For more info: Stop by our Booth (#4157) at the 58th Society of Toxicology Annual Meeting and TOXExpo in Baltimore, MD, Mar 11-14, 2019.

About GARD™
GARD™ consists of a group of tests for analyzing chemicals’ ability to start an allergic reaction in humans. By analyzing hundreds of markers, GARD™ generates large amounts of data and delivers results with over 90 percent accuracy. This can be compared to today’s standard method – tests on mice – which only achieves 70-75 percent precision. SenzaGen’s test can also quantify the allergenic potential of a chemical substance.

About MB Research Labs
Since 1972, MB Research Labs has offered toxicology testing services to the cosmetic, consumer product, agri-chemical, biotechnology and pharmaceutical industries. A leading CRO with over 30 years’ experience in the in vitro/alternative and mechanistic toxicity testing field, we maintain a prominent position in non-animal testing in the US, EU and many other countries, MBRL is always ready to adopt, as well as invent new non-animal-based predictive toxicity testing technologies. Our laboratories offer GLP assays in full compliance with OECD, FDA and EPA test guidelines, as well as custom-designed toxicity evaluations.

About SenzaGen AB
SenzaGen makes it possible to replace animal experiments with in vitro genetic testing to determine the allergenicity of the chemicals we come into contact with in our daily lives, such as for example in cosmetics, pharmaceuticals, food products and dyes. The company’s patented tests are the most reliable on the market and provide more information than traditional evaluation methods. The tests are sold via license laboratories (CRO) and distributors, and via the headquarters in Lund and the sales office in the US. Over the next few years the company will expand geographically, make alliances with more distribution partners and launch further unique tests. SenzaGen has its headquarters in Lund in Sweden and a subsidiary in the USA.

New Pinterest Page by MB Research

Pinterest Announcement

Here we go!  Just started our official Pinterest Page which will feature cool and interesting pics of MB Research, our work and likes!

Balancing on the edge of science and art.  I hope that you will like our take on Toxicology, Art and Design.


Soon, we will have more featured toxicology studies as well as more about the cutting-edge in vitro and alternative research.  For more information about what we do, check us out at

We want to be your Trusted Toxicology Testing Partner.

The Porcine Corneal Opacity and Reversibility Assay (PorCORA) and Assessment of the Drivers of Classification with Regards to Ocular Damage

PorCORA - Corrosive or Severe Eye Irritant?
PorCORA – Corrosive or Severe Eye Irritant?

Eye Irritation Testing

The Draize Rabbit Eye Test (DRET) is the regulatory ‘Gold Standard’ for  assessing and categorizing ocular irritation/corrosivity.  The DRET focuses attention on damage to a number of different ocular structures, which are scored and weighted based on toxicological importance. The structures are as follows: Cornea (CO) – 80 points, Conjunctiva (Conj) – 20 points, and Iris (IR) – 10 points.

The heaviest weighting is on corneal damage, which is 80 points out of the total 110-point scale devised by Draize.  Corneal irritation scoring is based on assessment of opacities on the cornea, Conj irritation is assessed by increased vascularization, and iridial damage is assessed by function of the iris (ability to constrict or dilate pupil)and deepening of the rugae.

PorCORA – Corneal Irritation Focus

Since the CO scores have the heaviest weight, and most often are the drivers of eye irritation, we developed the Porcine Cornea Opacity Reversibility Assay (PorCORA), an ex vivo corneal model. The PorCORA can distinguish between a material’s potential to cause severe (reversible) versus corrosive (irreversible) damage. Excised cultured porcine corneas are topically dosed with a test material and kept in culture for 21 Days.  Corneal damage is visually assessed and scored.  If CO reverse and are not visible by Day 21, the test material is categorized as a non-corrosive material and deemed to not cause permanent ocular damage.

In internal validation studies, we tested 56 chemicals and dilutions of chemicals ranging from corrosive (GHS category 1) to non-irritating (GHS not categorized). Using Cooper Statistics, we arrived at an accuracy of 89% with a positive and negative predictivity of 85% (cat. 1) and 93% (not cat.1), respectively.

Drivers of Classification Concept

To determine if these Cooper Statistics could be improved, we used the drivers of classification concept based on Barroso et al., 2016*. Upon re-examination of our data based on this published database and methodology, we found that four chemicals (1,2,4-Triazole, N-Butanol, 2,5-Dimethyl-2,5-Hexanediol, and Potassium Cyanate) had invalid tests (animals euthanized prior to day 21) or produced irritation not driven by corneal opacities. These chemicals were removed from our dataset. Without these four chemicals the accuracy improved to 92%. Moreover, the major change was in our positive predictivity, which increased to 91%. The negative predictivity for this subset of chemicals remained the same.
Lastly, PorCORA’s predictivity was assessed based on CO persistence; i.e., materials that produced low CO scores (from Draize Rabbit Eye Tests). Of the 56 chemicals tested, 40 had low severity (i.e., CO mean scores < 3). The accuracy for persistence of low CO scores was 88% with positive and negative predictivity of 79%, and 92%, respectively.

* Barroso, J., Pfannenbecker, U., Adriaens, E., Alépée, N., Cluzel, M., De Smedt, A., Hibatallah, J., Klaric, M., Mewes, K., Millet, M., Templier, M., McNamee, P.  2016.  Cosmetics Europe compilation of historical serious eye damage/irritation in vivo data analysed by drivers of classification to support selection of chemicals for development and evaluation of alternative methods/strategies: the Draize eye test Reference Database (DRD).  Arch. Toxicol.  91:521-547.


Based on these data, the PorCORA was proven to be a valid test to assess a material’s potential to distinguish reversible versus irreversible eye damage.

Appropriate choices of validation chemicals, based on the drivers of classification, have proven valuable and should be applied to replacement ocular assays that previously failed to meet acceptance criteria.

PorCORA testing results are encouraging and future studies are planned that will pursue mixtures and chemical substances of unknown or variable composition, complex reaction products and biological materials.  PorCORA

If you would like to find out more about PorCORA and other in vitro/alternative toxicology testing methods, please click here.


Need Packing Groups for SDS?

Corrosivity Testing Special: $800 Sample*


Corrositex® for Safety Data Sheets – ASAP!

Corrositex® is an in vitro method used to determine the dermal corrosive potential of chemicals and chemical mixtures.

Corrositex® has been designed as a replacement for the dermal corrosivity rabbit test based upon proprietary biomembrane and chemical detection technology.  Corrositex® is also OECD approved – OECD Test Guideline 435: Non-Animal Dermal Corrosivity Test for Packing Group Classification.

* For two (2) or more samples sent together; Single (1) sample price: $995

Safety Evaluation of Cosmetics

Safety Evaluation of Cosmetics


Safety evaluation of cosmetic ingredients is based upon the testing principles of the risk assessment process most typically applied to chemical substances.  The regulatory drive of Cosmetic safety is driven by the Federal Food, Drug, and Cosmetic Act (FD&C Act) and the EU Regulation 1223/2009.

The FD&C Act prohibits the marketing of adulterated or misbranded cosmetics in interstate commerce and EU Regulation 1223/2009 aims to protect human health, reduce and regulate animal testing as well as make information more available to consumers, leading to the introduction of the product ingredient file concept.

In 2013, the European Union (EU) enacted the Directive 76/768/EC, the primary law that outlines cosmetics safety requirements.  This Directive includes the 7th amendment which mandates prohibition of animal testing for cosmetic products and ingredients.

In accordance with European regulations, a Product Information File (PIF) must be authored for each cosmetic product and submitted to the competent authorities on demand.

A key part of the PIF is a safety assessment or Cosmetic Product Safety Report, which is a safety assessment that provides:

  • Toxicological profile of each substance in the finished product (including Hazard Identification)
  • Chemical and physical specifications of the substances
  • Exposure level for each substance
  • A risk characterization for each substance

Expert Cosmetic Safety Testing Partner

MB Research Labs has been the premier choice in conducting product safety assessments for the cosmetics, personal care, chemical and pharmaceutical industries for over 45 years.  Our expertise is sought out to ensure the safety our partners’ cosmetic ingredients.  MB Research is a leader in the use and development of In Vitro and Alternative Toxicology Tests and continue to introduce new testing methods regularly.

For more information about MB Research and our In Vitro Toxicology Testing Capabilities…

OECD 471: Bacterial Reverse Mutation Test (Ames Assay)

OECD 471: Bacterial Reverse Mutation Test (Ames Assay)
OECD 471: Bacterial Reverse Mutation Test (Ames Assay)

Evaluate the mutagenic potential of a test article based on the reversion of selective growth mutations


The purpose of this study is to evaluate the mutagenic potential of a test article based on the reversion of selective growth mutations in several strains of Salmonella typhimurium bacteria and in Escherichia coli WP2 uvrA bacteria, in the presence and absence of S9 activation. This protocol is based on OECD Guideline for Testing of Chemicals: No. 471 – Bacterial Reverse Mutation Test and U.S. EPA Health Effects Test Guidelines OSCPP/OPPTS 870.5100 – Bacterial Reverse mutation Test.  MB Research Labs utilizes the test guideline recommended bacterial strains (E. coli WP2 uvrA , S. typhimurium TA97a, S. typhimurium TA98,  S. typhimurium TA100, and S. typhimurium TA1535).  More information available here.

Basis of the Method:

The test system will be exposed to the test article via the plate incorporation method, which has been shown to effectively detect a wide variety of mutagenic compounds. This assay is based on the methodology  originally described by Ames, et al. (1975) and updated by Maron and Ames (1983) and complies with the Guidelines.

Data Interpretation:

In general, a 2-fold increase with or without metabolic activation will be considered a positive response. Dose-related increases approaching a 2-fold increase will be deemed equivocal and a repeat test will be recommended.

Negative Results will be determined by the absence of a dose-related increase in all five tester strains, again taking into account toxicity of the test article as well as the quality checks of the assay.

Positive Results from the bacterial reverse mutation test indicate that the substance induces point mutations by base substitutions or frame shifts in the genome of either Salmonella typhimurium and/or Escherichia coli. Negative results indicate that under the test conditions, the test substance is not mutagenic in the tested species.

This study is conducted in accordance with the Good Laboratory Practices of the EPA, 40 CFR 160 and 792, FDA 21 CFR Part 58, and as specified in the OECD, Principles on Good Laboratory Practice, revised 1997.


1. B. N. Ames, J. McCann, and E. Yamasaki. Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat Res 31 (6):347-364, 1975.

2. D. M. Maron and B. N. Ames. Revised methods for the Salmonella mutagenicity test. Mutat Res 113 (3-4):173-215, 1983.

3 L. D. Claxton, J. Allen, A. E. Auletta, K. Mortelmans, E. Nestmann, and E. Zeiger. Guide for the Salmonella typhimurium/mammalian microsome tests for bacterial mutagenicity. Mutat Res 189 (2 (Oct)):83-91, 1987.

4. K. Mortelmans and E. Zeiger. The Ames Salmonella/microsome mutagenicity assay. Mutat Res 455 (1-2):29-60, 2000.

5. OECD Guideline for Testing of Chemicals: No. 471 – Bacterial Reverse Mutation Test (July 1997)

6. U.S. EPA Health Effects Test Guidelines OPPTS 870.5100 – Bacterial Reverse mutation Test (August 1998).

Need A Quote?

Contact MB Research for more information on conducting an Ames Test (OECD 471).

California SB-1249 – Testing Solutions – In Vitro & Alternatives

Cali SB-1249
Cali SB-1249

California Cruelty-Free Cosmetics Act (California SB-1249)

On Sep. 28,2018, California Governor Jerry Brown signed the California Cruelty-Free Cosmetics Act (California SB-1249), a bill banning the sale of cosmetics that undergo animal testing, making California the first state to approve such a ban.

The California Cruelty-Free Cosmetics Act makes it unlawful for cosmetic manufacturers to sell any cosmetic in California if the final product or any component of the product was tested on animals and goes into effect Jan. 1, 2020.

Products that have undergone testing on animals before that date can still be sold in California.  Earlier in the month, the bill passed the state legislature after it was narrowed in scope.

Are You Ready With In Vitro Testing?

I Love In Vitro Toxicology
I Love In Vitro Toxicology

MB Research Labs is positioned to help manufacturers with a suite of in vitro and alternative (non-animal) tests for cosmetic safety testing.  MB has over 45 years of toxicology testing experience and over 25 years of testing using non-animal test methods.